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ABSTRACT 

A detailed Tinite element analysis of the monotonic loading of a stationary- 

crack is performed under Mode I plane stress, small-scale yielding conditions. A 

small strain, J2 incremental plasticity theory is employed and both elastic-perfectly 

plastic and power law hardening materials are considered. Some issues such as 

the range of dominance of the asymptotic stress and deformation fields and the 

amount of non-proportional loading near the crack tip, which have received wide 

attention in the analogous plane strain problem, are examined. Special attention is 

devoted to the perfectly plastic idealization by performing a separate singular finite 

element analysis to clarify some details about the asymptotic stress and deformation 

fields. The full-field numerical solution is used to simulate synthetic (optical) caustic 

patterns at different distances from the tip, which are compared with experimental 

observations and with asymptotic analytical results. 



1. INTRODUCTION 

The stress intensity factor is a measure of the intensity of the stress and strain 

fields near a crack tip in linear elcistic fracture mechanics. However, fracture in 

most structural materials, particularly low and intermediate strength metals is often 

accompanied by plastic flow near the crack tip, invaUdating the assumptions of linear 

elasticity theory. Under certain circumstances, the stress intensity factor can still 

be used to characterize the onset of crack growth, provided that the plastic zone 

is contained well within the region of dominance of the singular elastic field. This 

situation is often referred to as "small-scale yielding." But when plastic flow takes 

place over large size scales, one is compelled to seek continuum solutions for crack 

problems within the context of an elastic-plastic theory. 

HUTCHINSON (1968a, 1968b) and RICE and ROSENGREN (1968) 

performed the asymptotic analysis for stress and deformation fields near a mono- 

tonicaily loaded stationary crack tip in a power law hardening material obeying 

a deformation plasticity theory. The fact that the value of the J integral (RICE, 

(1968a)) provides a measure of the intensity of the near-tip field in this asymptotic 

solution has prompted some investigators (e.g., BEGLEY and LANDES (1972)) 

to propose a criterion for the onset of crack growth based on the attainment of 

a critical value for J. This proposal has been complemented by a wide range of 

experimental data (e.g., LANDES and BEGLEY (1972)). 

In order to characterize fracture initiation based on this single macroscopic pa- 

rameter, it is imperative that the plastic singular fields of HUTCHINSON (1968a, 

1968b) and RICE and ROSENGREN (1968) should dominate over a length scale 

that is large as compared to the fracture process zone. In this region, microstruc- 

tural processes such as void nucleation and growth, microcracking, etc. take place. 

The fracture process zone is often believed to coincide with the region near the tip, 
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wherein finite strain effects are significant. In addition to the above issues, anotlier 

important factor tliat has to be considered is tlie possibility of non-proportional 

loading near the tip, which would render the deformation plasticity theory (on 

which the analysis of HUTCHINSON (1968a, 1968b) and RICE and ROSENGREN 

(1968) is based) to be physically inappropriate. 

The above issues have been examined by several investigators through nu- 

merical methods predomhiantly under the tensile plane strain mode of fracture. 

Accurate finite element studies with crack tip elements making use of special in- 

terpolation functions to account for the plastic strain singularity were conducted 

by LEVY, MARCAL, OSTERGREN and RICE (1971) and RICE and TRACEY 

(1973) for the perfectly plastic case and by TRACEY (1976) for hardening mate- 

rials. These studies modelled Mode I plane strain, small-scale yielding conditions 

and employed an incremental plasticity theory. They confirmed the validity of the 

dominant fields of HUTCHINSON (1968a, 1968b) and RICE and ROSENGREN 

(1968) in a region quite close to the crack tip. McMEEKING (1977) performed a 

finite element calculation to model crack tip blunting based on a finite strain in- 

cremental plasticity theory under plane strain, small-scale yielding conditions. He 

observed that finite strain effects become important only for distances from the tip 

of the order of 2 or 3 times the crack opening displacement St (which will be defined 

in Sec.(4)). Strong path dependence of the J integral was also noticed within this 

region. 

SHIH and GERMAN (1981) investigated the range of dominance of the plastic 

singular fields for a wide variety of specimen configurations and material proper- 

ties from contained yielding to fully plastic conditions. They employed a small 

strain incremental plasticity theory and confined their attention to Mode I plane 

strain.   McMEEKING and PARKS (1979) also investigated configuration depen- 
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dence within the context of a finite strain theory similar to (McMEEKING, (1977)) 

under large scale yielding. Thus, substantial work under Mode I plane strain con- 

ditions has been performed to provide a better understanding of the mechanics of 

crack tip state and also to specify size requirements for specimens used in fracture 

toughness testing to ensure J dominance. 

However, very little information is available in the literature pertaining to 

the above issues under Mode I plane stress, despite its practical importance to 

structural problems. A preliminary numerical investigation was carried out by 

HILTON and HUTCHINSON (1971) under plane stress, small-(and large-) scale 

yielding conditions in which the plastic singular fields were imposed in a small circle 

near the crack tip. The value of J or some other equivalent plastic intensity factor 

was determined along with the nodal displacements from the finite element solution. 

SHIH (1973) applied their method to study combined Mode I and Mode U fracture 

problems under both plane strain and plane stress. Both these studies employed 

a deformation plasticity theory and considered power-hardening materials. Also, 

the validity of the asymptotic solution of HUTCHINSON (1968a, 1968b) and RICE 

and ROSENGREN (1968) was assumed over a length scale, which was not known 

a priori, although this was contained well within the plastic zone in these numerical 

simulations. 

Some of the issues mentioned above, pertaining to the range of dominance of the 

asymptotic fields and the amount of non-proportional loading near the tip, which 

have received considerable attention in the plane strain problem, have not been 

examined in plane stress. Thus, detailed numerical work along the lines of RICE 

and TRACEY (1973), McMEEKING (1977) and SHIH and GERMAN (1981) is 

required to firmly establish a conceptual understanding of fracture under plane 

stress conditions.   This is usually more complex than in plane-strain, primarily 
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because the equations of plane stress plasticity are somewhat more involved (e.g., 

HILL (1983)). 

In addition to the above considerations, a detailed numerical study of plane 

stress fracture is important because of the possibility of a direct comparison with 

optical experimental methods such as caustics. This method, which has been em- 

ployed to determine the stress intensity factor in linear elastic fracture problems 

(e.g., THEOCARIS and GDOUTOS (1972)), has recently been extended to appli- 

cations in ductile fracture (ROSAKIS, MA and FREUND (1983); ROSAKIS and 

FREUND (1982)). A knowledge of the range of dominance of the plastic singular 

fields is of primary importance to facilitate a proper interpretation of experimental 

data (ZEHNDER, ROSAKIS and NARASIMHAN (1986)). Also, information from 

full-field numerical solutions would be crucial in analysing the caustics obtained in 

regions outside the range of dominance of any particular asymptotic field. 

In this work, an elaborate finite element investigation, with a very fine mesh 

elucidating the details near the crack tip, is undertaken to simulate Mode I plane 

stress, small-scale yielding conditions. No attempt has been made in this part of 

the work to incorporate the expected singularity in the strains by using special 

crack tip elements. Computations have been performed for materials obeying an 

incremental plasticity theory with no hardening and with a power-law hardening. 

In Sec.(2), the numerical formulation, finite element scheme, etc. are outlined. 

In Sec.(3), stationary crack tip fields under plane stress are reviewed. In Sec.(4), 

detailed results are presented for the plastic zones, stress and strain distributions, 

and crack opening displacement. Also, the path independence of the J integral is 

examined. 

In Sec.(5), caustic patterns are simulated from the numerical solution at a wide 

range of distances from the crack tip and are compared with experimental observa- 



tions (ZEHNDER et al. (1986)) and asymptotic results (ROSAKIS et al. (1983)). 

In Sec.(6), an additional numerical analysis, employing singular elements near the 

crack tip, is performed for the perfectly plastic case in order to examine the asymp- 

totic stress and deformation fields. The issue of sensitivity of the numerical results 

to the near-tip mesh design is thus investigated. It is found that the dominant 

strain field near the tip for perfect plasticity is completely different from the limit 

of the singular solution of HUTCHINSON (1968a, 1968b) and RICE and ROSEN- 

GREN (1968) for materials with low hardening. On the other hand, the numerical 

results for the near-tip stress field are in good agreement with the slip line solution 

of HUTCHINSON (1968b). In the light of this observation, it is suggested that 

the configuration dependence of crack tip deformation should be investigated under 

plane stress in the spirit of SHIH and GERMAN (1981) and McMEEKING and 

PARKS (1979). Such an analysis could be complemented by experimental results 

based on caustics. 

2. NUMERICAL ANALYSIS 

Formulation 

The Mode I plane stress, small-scale yielding problem (RICE (1968b)) was 

modelled by considering a crack in a domain R, which was entirely represented by 

finite elements as shown in Figs, la and b. Only the upper half-plane was considered 

because of Mode I symmetry. All field quantities are referred to with respect to an 

orthonormal frame {6^,62,63} centered at the crack tip. The leading term in the 

displacements of the linear elastic asymptotic solution, 

^a=Ki^u^{9), (2.1) 

was specified as boundary conditions on the outermost boundary S of the 



crack tip 

((>) 

Figure     1.  Finite element mesh: a) Outer mesh b) Fine mesh near the crack tip. 
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domain.^ The loading was applied through the Mode I stress intensity factor Ki, 

which occurs as an amplitude factor in Eqn.(2.l). 

The maximum extent of the plastic zone surrounding the crack tip was at all 

times within ^ of the radius of the outermost contour S, so that the small-scale 

yielding condition was preserved. All plastic deformation was confined within the 

active region shown in Fig. la, which has a total of 1704 four-noded elements and 

3549 degrees of freedom. The large region surrounding this active mesh has a total 

of 40 rings with 56 elements in each ring and remained elastic throughout the entire 

computation. The constant stiffness of this region was statically condensed using 

a ring-by-ring static condensation procedure that involved a partial forward Gauss 

reduction at each stage. 

The cutout in Fig. la is a fine mesh region near the crack tip, which is shown 

in detail in Fig. 16. This mesh was designed to have small rectangular elements 

parallel to the crack plane instead of being focussed at the crack tip. No attempt 

has been made to incorporate the singularity of the plastic strains by using special 

crack tip elements in this analysis (see Sec.(6) and RICE and TRACEY (1973)). 

This was because the stress and strain fields at the end of the stationary load 

history were used as initial conditions for simulating stable crack extension, which 

will be reported elsewhere. The radius R^, of the active mesh and the radius of the 

outermost boundary S are about 385 times and 3400 times the size L of the smallest 

element near the crack tip, respectively. 

The Mode I symmetry conditions that are given by 

C712(X1,I2  = 0) =: 0 

\ a;i >0, (2.2) 
«2(a;i,a^2 = 0) = 0 

^ Throughout this paper, Greek subscripts will have the range 1,2, while Latin 

subscripts will take values 1,2,3. 
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were imposed by attaching stiff springs in the X2 direction to the nodes ahead of 

the crack tip. Traction-free conditions were imposed on the crackfiank. 

The type of element used was the four noded isoparametric quadrilateral, which 

was formed from four constant strain triangles with static condensation of the in- 

ternal node. This element was suggested by NAGTEGAAL, PARKS and RICE 

(1974) to relieve artificial mesh-locking effects that occur under nearly incompress- 

ible conditions in plane strain. However, this problem does not arise in plane stress 

because there is a non-zero out-of-plane strain component €33, which is determined 

in terms of the in-plane strain components ea/3. 

Material Idealization 

The materials that were numerically modelled were the elastic-perfectly plastic 

solids and isotropic power-hardening solids. A small strain incremental plasticity 

theory was employed along with the Huber-Von Mises yield condition and the asso- 

ciated flow rule. The Huber-Von Mises yield condition for isotropic hardening takes 

the form, 

ffee-P)=F(a)-a2(eP), (2.3) 

1/9 
where F[a) = |S .S and e^ = J {^^^j^^j) dt is the accumulated equivalent plastic 

strain. In the above, S is the deviatoric stress tensor and o[l^) is defined by the 

following power hardening rule: 

eP       f oV       o 

For the elastic-perfectly plastic case, a takes the constant value of ao, the yield 

stress in uniaxial tension. In Eqn.(2.4), eo is the yield strain in uniaxial tension. 

Within the context of the small strain flow theory of plasticity, the total strain 

rate tensor can be decomposed into elastic and plastic parts: 

i = f + eP . (2.5) 
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The stress rate tensor q_ is related to the elastic strain rate tensor e^ through a 

constant, isotropic, positive definite elasticity tensor C as, 

0:=Cf. (2.6) 

The plastic strain rate tensor '^ is normal to the yield surface and the flow rule 

takes the form, 

i^ = -F^=AS, (2.7) 
o 

where A > 0. 

By using Eqns.(2.3)-(2.7) the constitutive law for material currently experienc- 

ing elastic-plastic deformation can be obtained a;s. 

<^ij — ^ijM^ki — Cijkl - 
SrtCrtuvSuv + Q^^ H 9' 

hi ■ (2.8) 

In the above, H = -— and can be obtained from (2.4) for hardening solids and IS 

set equal to zero for perfect plasticity. 

In the present analysis, (2.3) and (2.8) were used along with the plane stress 

constraint, which requires 

(T3i = 0 . (2.9) 

By using (2.9) in (2.8), an expression for 633 can be obtained in terms of iap. 

Finite Element Scheme 

A displacement based finite element method was employed in the analysis. The 

finite element equations were derived from the principle of virtual work. At a time 

(t + At) this takes the form, 

/  a(t + At).(5edA= /     T(t + At). <5uds . (2.10) 
^R JdR 

Here a(t + At) represents the Cauchy stress tensor, which satisfies equilibrium at 

time (t + At) and T(t + At) the imposed traction vector on the boundary dR. 
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Also, 6n represents the virtual displacement vector that vanishes on the part of 

the boundary where the displacements are specified and Se is the associated small 

strain tensor. 

After linearizing about the equilibrium configuration at time t and introducing 

the finite element approximation, the following incremental equilibrium equations 

are obtained in matrix form (e.g., BATHE (1982)): 

KTAU = F(t+At)-P(t) . (2.11) 

Here AU = U(t + At) — U(t) is the vector of nodal point displacement increments. 

Also, Krp = /pj^ B D BdA is the tangent stiffness matrix corresponding to the config- 

uration at time t, B, the strain displacement matrix (e = B U) and D, the material 

constitutive matrix. D will be equal to C for purely elastic response and C* for 

elastic-plastic material response. F(t + At) is the vector of externally applied nodal 

point loads at time (t + At) and P(t) = /j^B'^CT(t)dA is the vector of nodal point 

forces equivalent to the element stresses at time t. 

In the present analysis, time is only a convenient variable that represents differ- 

ent levels of load intensities. An iterative Newton-Raphson procedure (e.g., BATHE 

and CIMENTO (1980), BATHE (1982)) was employed in the solution of the incre- 

mental equilibrium Equations (2.11). This method is summarized in the Appendix. 

Stress Computation 

As was observed above, the finite element scheme solves the displacement equa- 

tions of equilibrium in an incremental fashion. Hence, the constitutive laws pre- 

sented earlier that deal with stress and strain rates were used approximately to 

relate small finite increments in stresses and strains. An explicit integration proce- 

dure also known as the Tangential Predictor-Radial Return method was employed to 

integrate the incremental stress-strain law. As shown by SCHREYER, KULAK and 
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KRAMER (1979), this method, if used with subincrementation (as in the present 

analysis), is very accurate for plane stress conditions. 

It is important to recall that the requirement of plane stress imposes a con- 

straint for the out-of-plane strain increment A633 in terms of the in-plane strain 

increments Aeap- Due to this constraint, it is more convenient to perform com- 

putations with stress and strain tensors instead of with their deviatoric parts as is 

normally done in plane strain. The method of stress computation is outlined in the 

Appendix. 

Solution Strategy 

As noted earlier, the loading was applied through the Mode I stress intensity 

factor Ki, which enters the far-field displacement boundary condition (2.1). An 

initial load step was performed in which Ki was small enough to ensure that all 

the elements remained elastic. Ki was then scaled to cause incipient yielding in the 

element nearest to the crack tip. 

Subsequent load steps were performed by increasing Ki by 5-10% of the in- 

cipient value at a time and iterating for convergence to equilibrium. Each load 

step required typically 3-4 iterations before converging to an accepted equilibrium 

configuration. Yielding was continued till the plastic zone surrounding the crack 

tip had a maximum extent of about 50 or 100 times the smallest element size L in 

order to guarantee sufficient resolution near the crack tip. 

3. STATIONARY CRACK TIP FIELDS 

Power-Hardening Solids 

HUTCHINSON (1968a, 1968b) and RICE and ROSENGREN (1968) investi- 

gated the asymptotic stress and strain fields near a monotonically loaded stationary 

crack tip in an elastic-plastic solid.  The dominant singular term of their analysis 
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will be referred to as HRR in the sequel. In their work, a J2 deformation plasticity 

theory and a power-law hardening idealization similar to (2.4) were assumed. 

The HRR analysis employs a small strain formulation and assumes a separable 

form in polar coordinates r and 6, for the dominant term of the solution, to obtain, 

1 

J 
■t] 

«f;   ~ ^0 

dij{d,n) 

^,{9,n) 

> , (3.1) 

In (3.1), <7o and eo are the yield stress and strain in uniaxial tension and n is the 

hardening exponent. The angular factors dij[6,n) and e^,(^,n) depend on the mode 

of loading and on the hardening exponent. The dimensionless quantity In, which 

is defined in (HUTCHINSON (1968a)), decreases from 5 for n = 1 to about 2.6 for 

n —>• 00 under plane stress. J in (3.1) is the value of the J integral of RICE (1968a), 

For plane deformations, the J integral is defined for any path of integration V 

by, 

J =  / [Wu-i: - UiOijUj^i)ds , (3.2) 

where W is the local stress work density, Ui a unit vector normal to T and ui is 

a particle displacement vector. For our purposes, T will denote an open contour 

surrounding the crack tip. The integral (3.2) has the well-known property of path 

independence for a wide class of solids, including materials that obey the deforma- 

tion theory of plasticity. Under small-scale yielding conditions, J can be evaluvated 

from contours taken in the far-field (K dominated) elastic region as, 

E 
(3.3) 

for plane stress. It is important to note that J enters (3.1) as an amplitude factor 

and hence provides a unique measure for characterizing fracture initiation at the 

crack tip. 
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The main limitation of the HRR analysis is the unknown range of dominance 

(e.g., with respect to maximum extent of the plastic zone) of the singular solution. 

This issue is important since this range of dominance should be large as compared 

with the fracture process zone and the region near the crack tip where the small 

strain plasticity theory breaks down. From the experimental standpoint, this infor- 

mation is crucial in the proper interpretation of experimental data based on optical 

measurements (ZEHNDER et al. (1986)). 

Also, the discrepancy between the deformation theory and the more appropri- 

ate incremental theory of plasticity has to be assessed from the context of crack tip 

fields. In addition, another serious limitation that will be pointed out later occurs 

when the limit n -> oo is taken. This is associated with the change in nature of the 

governing equations in the limit as the perfect plasticity case is approached. 

The above issues will be investigated from the point of view of the plane stress 

full-field numerical solution presented here. This solution simulates small-scale 

yielding conditions and employs an incremental plasticity theory. 

Perfectly Plastic Solids: Stress Field 

For perfectly plastic solids, the following important assumptions regarding the 

asymptotic nature of the stress field are usually made. 

de '^^^     dd r -^ 0 . (3.4) 

dr 

It is important to bear in mind that the field equations for perfect plasticity are 

hyperbolic ^, while those for hardening solids are elliptic. 

For perfectly plastic solids under plane stress, the governing equations for the 

stresses could be hyperbolic, parabolic or elliptic (e.g., HILL (1983)). 
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Equation (3.4) can be used to obtain asymptotic forms of equilibrium equations 

and the Von Mises yield condition (RICE and TRACEY (1973)).   These can be 

employed to show that only two types of asymptotic plastic sectors can exist near 

the crack tip. These are as follows for plane stress. 

i) Centered Fan Sector 

In this sector, radial lines are stress characteristics and the asymptotic stress 

field has the following form, 

<,(^)=rocos(^-^o)    1 

a°g{e) = Tosm{6-eo)    J 

where ^o is an arbitrary constant angle and TQ is the yield stress in pure shear. 

it) Constant Stress Sector 

In this sector, the Cartesian components of the stresses are constant, 

<(s{9) = ^/? • (3.6) 

The constants b^p are related by the yield condition. Straight lines along which the 

direct components of the stress deviator S° ^ vanish are stress characteristics (HILL 

(1983)). 

HUTCHINSON (1968b) assembled a solution for the near-tip field comprising 

of a combination of the above sectors as shown in Fig. 2. The region marked A 

is a centered fan sector extending from ^ = 0° to ^ = 79.7°, while the regions B 

and C are two constant stress sectors, which occupy the angles from 0 = 79.7° to 

0 = 180°. The stresses in Sector A are as given by (3.5) with ^o = 0. In particular, 

it should be noted that the stresses ahead of the crack tip {0 = 0) are given by 

^^ii = ^0        (x^2 = 2ro        cr°2 = 0 . (3.7) 
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ai^Ta^i ^2= 151.4 

Figure     2. Ana.}yt'ical asymptotic Reld near a stationary crack tip in a perfectly 
plastic solid under plane stress represented by stress characteristics.. 
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There is also a discontinuity in the Urr stress component between the two constant 

stress sectors B and C, which is admissible as long as the crack remains stationary. 

Perfectly Plastic Solids: Deformation fields 

As noted by RICE (1968a) in the case of plane strain, singularities in strains 

result when slip lines focus at a point as in centered fan sectors. The displacements 

Ui (or the rates u; in a proper incremental formulation (HILL (1983))) are functions 

of angle 0 as the crack tip is approached within centered fan sectors resulting in 

a discrete crack opening displacement at the tip. The following assumptions are 

often made (RICE and TRACEY (1973)) about the displacements u; (or the rates 

lii) within centered fan sectors, 

^^^—~«.W-^|, r->0. (3.8) 

r— ~ 0(1) J 

Since radial lines are stress characteristics in the fan, e^,. is nonsingular while 

^^e (or ^?e) and e^^ (or e^^) are singular as 0(i) when the crack tip is approached 

within the fan. Thus, it is possible to write 

4, ~ «o&^ 

e^g ~ eo—-— 

(3.9) 

within fan sectors. The angular factors e^gg{d) and e^giO) are non unique and cannot 

be determined from a local analysis. They depend on a solution to the entire 

boundary value problem. However, from the flow rule , 

the following relation can be obtained between e^g and e^g, 

• p -p   ^rO , . 
<^ = %^-> 3.11 
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provided 3$$ ^ 0. Although this equation strictly applies for the strain rates in an 

incremental theory, it can be used to relate the total strains if the stresses remained 

constant at a material point from the time it was enveloped by the plastic zone. 

Hence, it is expected to hold approximately between the asymptotic angular strain 

factors e^g{&) and i^g{0). 

The dominant HRR solution for the stresses (3.1) approaches the limiting sli- 

pline distribution of perfect plasticity as the hardening exponent n —>^ oo. But as 

has been observed by LEVY et al. (1971) and RICE and TRACEY (1973) for 

plane strain, one cannot in general expect the HRR singular solution for the strains 

as n —*■ oo to be the dominant solution for perfect plasticity because of the non- 

uniqueness noted earlier. 

On the other hand, the strain components are (in general) non-singular in 

the constant stress sectors and the same displacement results if the crack tip is 

approached along different radial lines in these sectors. 

An expression for the near-tip J integral can be obtained from the asymptotic 

form (3.9) following plane strain analysis of RICE (1968a). Taking the contour T 

in (3.2) to be a circle of radius r, one can write (3.2) as, 

J = r        <W cos 6 — Orr [(^rr COS d — [e^e — w) sin 0'\ 

- Ore [[(-re + w) cos 9 - 600 sin 9] >d9 . 

In the above equation, u> is the rotation, and 

u = -ere + ol-],        r-> 0 . ' (3.13) 

(3.12) 

r 

Also, 

(I 
err = 01   - r ^ 

W = W^ + o' ^ 
r 

r^O, (3.14) 
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where 

Taking r —+ 0 in (3.12) and using the asymptotic equations (3.5), (3.9), (3.13) and 

(3.14), one obtains 

(3.15) 

-h e^^ sin^ ^ U^ , 

where ^* is the maximum angular extent of the fan. 

4. RESULTS AND DISCUSSION 

The computations were performed for two levels of power hardening, n = 5 and 

9 and also for the elastic-perfectly plastic case, which is referred to as n = oo in the 

following discussion of the results. It should, however, be noted that the elastic- 

perfectly plastic calculation was performed with H = ^ = 0 in the constitutive 

Equation (2.8). The ratio of the Young's modulus to the yield stress in pure shear 

(E/TQ) was taken as 1400 for the two cases of power-hardening and as 350 for the 

elastic-perfectly plastic calculation. The Poisson's ratio was taken as 0.3 for all 

cases. 

Plastic Zones 

The plastic zone surrounding the crack tip is shown in Fig. 3 for the three 

values of hardening exponent n. The crack tip is situated at the origin of the 

coordinate axes that have been made dimensionless by the parameter (KI/CTQ) . 

This parameter has the unit of length and also contains a measure of the far-field 

loading. Hence, the size of the plastic zone is expected to scale with respect to this 

parameter under small-scale yielding conditions. A point in the figure represents a 

yielded integration station within an element.  It should be noted that the plastic 
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Figure     3. Plastic zones surrounding the crack tip for three levels of hardening: 
n=5,9 ajid oo. 
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material with n = 9. 
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zone becomes less rounded and spreads more ahead of the crack tip with decreasing 

hardening (increasing n). 

These  plastic  zones agree well in shape but  are slightly smaller in size  as 

compared with the results of SHIH  (1973), who employed a deformation plas- 

ticity theory and used a singular element near the crack tip.    The maximum 

extent of the plastic zone that occurs ahead of the crack tip [9 = 0)  is about 

rp = 0.22(KI/c^o)^ 0.25(KI/<TO)^ and 0.29(KI/(TO)^ for n = 5,9 and oo, 

respectively. For comparison, Shih's calculation indicates an rp of about 

0.32(KI/<7O)^ for n = 25, and TADA, PARIS and IRWIN (1973) report 

Tp = -(Ki/(7o)   for n = oo based on an approximate calculation. The slightly larger 

size of the plastic zone obtained by Shih could be due to the imposition of the HRR 

singular solution in a small circle around the crack tip in his analysis. The present 

computation introduces no such a priori constraint. 

In Fig. 4 the numerically obtained plastic zone for n = 9 is compared with 

the visual evidence of permanent plastic deformation observed on the surface of a 

thin compact tension specimen (ZEHNDER et al. (1986)). The material used in 

this experiment was a 4340 carbon steel with a power-hardening exponent of 9 in 

uniaxial tension. The experimental and numerical plastic zones agree well in shape 

and also in size when the load levels in the experiment were small and there were 

no boundary interaction effects (contained yielding). 

Radial Distribution of Stresses 

The distribution of the normalized opening stress, 022/TQ, along the xi axis 

ahead of the crack tip and within the plastic zone is shown in Fig. 5. The centroidal 

values of stress in the row of elements ahead of the the crack tip have been used in 

making this plot. Advantage has again been taken of the self-similarity noted earlier, 

with the distance from the crack tip being measured in terms of the dimensionless 
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Figure     5,  Radial distribution of opening stress ahead of the crack tip. The solid 
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variable Xi/(Ki/<7o) . The finite element results agree to within 1% with the HRR 

asymptotic stress distribution (3.1), which is shown by the solid lines in the figure, 

in the range 0 < xi < 0.08(Ki/cro) • For example, at Xi = 0.018(Ki/(7o)^, the ratio 

of the finite element to the HRR asymptotic stress is 3.13/3.14, 2.66/2.67 and 

1.999/2.0 for n = 5,9 and oo, respectively. 

The values given by the HRR distribution for 0-22 are higher than their finite 

element counterparts by about 8% at the elastic-plastic boundary. This is in marked 

contrast to the corresponding result in plane strain (e.g., TRACEY (1976)), where 

strong deviation of the finite element solution from the HRR distribution was re- 

ported even for small distances from the crack tip. Also, it should be observed from 

Fig. 5 that there is only slight dependence of <722 on n for Xi > 0.15(Ki/cro)^. The 

finite element values differ by less than 10% (with respect to n) in this range. 

The radial variation of all the normalized stress components ahead of the crack 

tip within the plastic zone for the eleistic-perfectly plastic ccise is shown in Fig. 6. 

The finite element values near the crack tip are in excellent agreement with the 

asymptotic slipline solution of Hutchinson (Fig. 2). At Xi = 0.01(Ki/cro)^, an and 

a22 are 0.98ro and 1.999ro, respectively, which compares very closely with the values 

of To and 2ro given by the slipline solution (Eqn.(3.7)). Also, Fig. 6 indicates that 

the (Til stress component has a strong radial variation ahead of the crack tip, with 

a value at the elastic-plastic boundary of about 1.40ro. This suggests curving of the 

leading boundary of the fan at moderate distances from the tip. 

The plane-stress Huber-Von Mises yield surface can be represented by an ellipse 

in principal stress space in the following parametric form (HILL (1983)), 

■    CTi = 2T-OCOS(CI; ) 

(72 = 2rocos(u; H j 
6 (4.1) 

U! = u!{r,d) 
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For (7i > (72, the angle to varies in the range 0 < u; < TT. The governing equations 

for the stresses are hyperbolic if | < w < ^, parabolic if w = | or ^, and elliptic 

ifO<u;< |or^ <u;<7r. The value of ui{r -^ 0,0) corresponding to the 

asymptotic stresses (3.7) is |, whereas the stresses at the elastic-plastic boundary 

ahead of the crack tip give oj{rp,0) « f^. Thus, while the stress state ahead of 

the crack is parabolic near the tip, it appears to be elliptic at the elastic-plastic 

boundary. 

It is important from the viewpoint of optical experimental methods (such as 

caustics) to determine the effect of the crack tip plastic zone on the stress and 

deformation fields in the surrounding elastic region, in order to properly interpret 

the experimental data. To examine this effect, the radial distribution of stresses in 

the ray ahead of the crack tip is shown on an expanded scale in Fig. 7 for the two 

levels of hardening, n = 5 and 9. The stresses given by the singular elastic solution 

(Ki field) are shown for comparison by the solid line in the figure.. It is found that 

the (722 stress component obtained from the numerical solution is higher than that 

given by the singular elastic field at the elastic-plastic boundary (r = Vp) by more 

than 30%. However, the stress distribution undergoes a rapid transition outside the 

plastic zone and differs from the Ki field by less than 8% for r > 1.5rp. Also, the 

stress distribution in the surrounding elastic region seems to be quite insensitive to 

the hardening level. 

Radial Distribution of Plastic Strains 

The radial variation of the normalized plastic strains ^l^/^o and el^/eo with 

respect to normalized distance ahead of the crack tip is shown in Fig. 8 for the two 

levels of power hardening. The HRR solution for the asymptotic strain distribution 

(Eqn.(3.1)) is shown by the solid lines in the figure. The finite element solution, 

although slightly smaller than the HRR distribution near the crack tip, appears to 
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indicate the correct singular behaviour in the range r < 0.3rp. It should be recalled 

that a very detailed mesh was used near the crack tip (Fig. 16), and that the plastic 

zone was quite large as compared with the smallest element size (at least 50 times) 

at the stage when these results were taken. These factors compensate to some 

extent for the incorrect modelling of the singularity (3.1) by our using linear shape 

functions for the crack tip elements. 

The radial variation of the normalized plastic strains ahead of the crack tip 

for the elastic-perfectly plastic case is shown in Fig. 9. The solid line in the figure 

is the limit of the HRR dominant singular solution for €22/^0 for large n, which is 

given by (SHIH (1973); ROSAKIS et al. (1983)), 

p      HRR 
0.9fp 

r J n—*oo 

0^0,     r^O, (4.2) 

where 

The finite element solution for the strains seems to indicate the correct - variation 

near the crack tip (r < 0.04(Ki/cro) ) but is about 3.3 times the values given by 

(4.2). 

As has already been noted in Sec.(3), the HRR singular strain solution as 

n —^ 00, cannot (in general) be expected to provide the dominant solution for per- 

fect plasticity because of the non-uniqueness in strains associated with the non- 

hardening case. This discrepancy has also been observed in Mode I plane strain by 

LEVY et al. (1971) and RICE and TRACEY (1973). In this connection, it should 

also be mentioned that KNOWLES (1977), in working on the finite anti-plane shear 

field near a crack tip in an incompressible elastic solid, with a similar power law 

behaviour has made an important observation. He found that the first- and second- 

order terms in the asymptotic expansion for the displacements tend to become of 



75 

-25 
4 

■▲ 

A 
A 

-50h    4 
A 

-75 

-30- 

^      >        t 

/^ 

  

♦    ♦ 

A     A 

■22 

^?3 

Numerical 
(n = co) 

=0 J 
HRR, Asymptotic 
(large n ) 

0.00        0.05        0.10 0.15 

r 
0.20 0.25        0.30 

(Kj/cTo)' 

Figure 9. Radial variation of plastic strains ahead of tip for perfectly plastic 
case. A vast discrepancy with the HRR singular solution for large n (SHIH (1973); 

ROSAKIS et at. (1983)) is observed. 



-31- 

equal importance, as one approaches the equivalent of the "perfectly plastic" case 

in such solids. This raises the question of whether the limit as n ^- oo of the most 

singular term in the asymptotic solution can be considered separately, without ex- 

amining the limiting behaviour of the higher-order terms of the expansion. 

In order to resolve the issue further, a separate finite element calculation for 

the perfectly plastic case was performed under plane stress, small-scale yielding 

conditions using a focussing mesh with singular elements near the crack tip, similar 

to the work of RICE and TRACEY (1973). The results of this investigation will be 

reported in Sec.(6). Finally, it should be noted that the region ahead of the crack 

tip, wherein the - variation of the plastic strains was observed (r < 0.04(Ki/<7o) ), 

corresponds to the region of dominance of the asymptotic stress field (see Fig. 6). 

Beyond this range, the front boundary of the fan may tend to curve and the j 

variation for the plastic strains may no longer be valid (RICE (1968a, 1968b)). 

Crack Opening Displacement 

The opening displacement between the crack faces as a function of position 

along the crack flank is shown in Fig. 10 in the nondimensional form, 6/{3/ao) 

versus xi/(Ki/(7o) , for the three cases, n = 5,9 and oo. The linear elastic solution 

corresponding to n = 1 is also plotted for comparison. J in this plot is the far-field 

value given by (3.3). From the figure, it can be observed that the amount of blunting 

at the crack tip increases with decreasing hardening (or increasing n). There is a 

discrete opening displacement at the tip for the perfectly plastic idealization because 

of reasons stated in Sec.(3). 

On the other hand, the near-tip crack opening profile for the hardening cases, 

computed on the basis of the HRR analysis, has the form (HUTCHINSON (1968a); 

RICE and ROSENGREN (1968)), 

<5 = 2u2(r,7r) ~(2r(<5t)'')^, r^O. (4.3) 
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In this expression, 6t, which can be written as 

<5t = —St{eo,n) , . (4.4) 

can be approximately interpreted as the opening distance between the intercept of 

two 45° lines drawn back from the crack tip to the deformed profile. This definition 

was suggested by TRACEY (1976) as a measure of the crack tip displacement for a 

hardening material, since 6{r = 0) = 0 in this case, as can be seen from (4.3). SHIH 

(1981) has obtained the values for 6t{eo,n) from the HRR solution for both plane 

stress and plane strain. It is found (SHIH (1981)) that 6t is strongly dependent on 

n and weakly on eo- Also, as n ^ oo, ^t becomes independent of CQ and takes the 

value of 1.0 for plane stress. 

From the present finite element calculation, the value of <5t/(J/o"o) was obtained 

by extrapolating the near-tip crack profile to r = 0 for the non-hardening ca.se and by 

fitting the form (4.3) to the near-tip profile for the hardening cases. SHIH (1981) 

has also computed the values of (5t/(J/ao) for several values of n from his finite 

element solution of (SHIH (1973)), which as noted earlier employed a deformation 

plasticity theory. These results are summarized in the following table. 

Table 1:  Values of 6t/{J/ao) for plane stress 

(7o/E n = 5 n = 9 n = 25 n = oo 

HRR 0.0012 0.40 0.63 0.89 1.0* 

Present Solution 0.0012 0.37 0.57 0.85 

SHIH (1973, 1981) 0.38 0.86 

*(extrapolated) 

The slightly smaller values for (5t/(J/cro) obtained by the present solution, as 

compared to HRR for the hardening cases, can be accounted partially by some 
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discrepancy between flow theory and deformation theory as explained below. But 

the difference between the present perfect plasticity calculation and the HRR non- 

hardening limit is because the latter is unable to provide complete information 

regarding the most singular term for the strains in the asymptotic solution for 

perfect plasticity, as described above. This discrepancy has also been observed in 

plane strain. The published numerical results (e.g., SHIH (1981)) for <5t/(J/cro) 

under plane strain, small-scale yielding conditions for the perfectly plastic case 

range from 0.63-0.66, whereas the HRR non-hardening limit is 0.78. 

J integral calculations 

In order to assess the difference between the present incremental formulation 

and the deformation plasticity theory, the path independence of the J integral was 

checked. The J integral (3.2) was computed for the hardening materials along 

several contours surrounding the crack tip, which passed through the centroids 

of the elements. The near-tip contours enclosing the crack tip were rectangular, 

while the far-field contours were circular, in keeping with the structure of the mesh 

(Fig. 1). The integrand in (3.2) was calculated, using the averaged values of stresses 

and strains at the centroids of the elements lying in the contour path, and the 

integration was carried out numerically using Gauss quadrature. It was found that 

very near the crack tip (r < 0.04rp) there was a small amount of path dependence. 

However, after some distance away from the crack tip, the calculated J value was 

virtually indistinguishable from the remotely applied value (3.3). 

For a contour with an average radius f = 0.012(Ki/cro) , the ratio of the cal- 

culated J value to the remotely applied J was 0.96 and 0.95 for n = 5 and 9, re- 

spectively. For contours with average radius f > 0.05(Ki/c7o)^, the calculated J 

value was smaller than the applied J by less than 1%. While the 5% difference 

for the near-tip contours is within the realm of errors in the discretization proce- 
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dure and in the numerical integration of (3.2), it also suggests small amounts of 

non-proportional loading experienced by a material particle from the time it was 

enveloped by the plaistic zone. For the elastic-perfectly plastic material, our accu- 

rate numerical solution of Sec.(6) was used to estimate the near-tip J integral, and 

its discussion will be deferred till then. 

In order to further check for discrepancy between the two plasticity theories, 

622/^0 was calculated for the hardening materials at the centroids in the row of ele- 

ments ahead of the crack tip by substituting the averaged stresses in these elements 

into the expression given by the J2 deformation theory. The plastic strain given 

by the J2 deformation theory was about 5% higher at r = 0.012(Ki/cro)^ than the 

corresponding value given by the incremental formulation that was reported earlier 

(Fig. 8). This difference progressively diminished as the distance from the crack tip 

increased, and it was less than 1% for r > 0.1(Ki/ao)  . 

5. NUMERICAL SIMULATION OF CAUSTICS 

Introduction 

The optical experimental method of caustics has been a,pplied to the study of 

linear elastic fracture problems and to the direct measurement of the stress intensity 

factors (e.g., THEOCARIS and GDOUTOS (1972); ROSAKIS and ZEHNDER 

(1985)). This method was recently extended to the measurement of the J integral 

in ductile fracture (ROSAKIS et al. (1983); ROSAKIS and FREUND (1982)) on 

the basis of the validity of the plane stress, HRR asymptotic solution. 

Under conditions of small-scale yielding, the singular elastic field dominates 

well outside the plastic zone. Inside the plastic zone, very near the crack tip, the 

HRR field dominates. In the transition region between these two fields, no analyti- 

cal solution is available. This limits the applicability of caustics, and the conditions 
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under which the results reported in (ROSAKIS et al. (1983) and ROSAKIS and 

FREUND (1982)) are valid are uncertain. Also, errors may be caused in the mea- 

surement of Ki based on the caustics obtained from the elastic region surrounding 

the plastic zone. This is because the crack tip plastic zone affects the caustic pat- 

terns, and an analysis based on the Ki field may be erroneous. 

In this section, the full-field numerical solution under small-scale yielding is 

used to generate simulated caustic patterns. The numerical caustics are com- 

pared with the corresponding patterns observed from experiments (ZEHNDER et 

al. (1986)). The analysis of caustics based on the numerical results is not limited 

by the assumption of the validity of any particular asymptotic field. Finally, quali- 

tative and quantitative comparisons of the simulated caustics, obtained at various 

distances from the crack tip, are made with the corresponding results based on the 

near-tip HRR analysis and the remotely applied Kj field. 

The Method of Caustics 

Consider a set of parallel light rays normally incident on a planar, reflective 

specimen that has been deformed by tensile loading. Due to the deformed shape 

of the specimen, an envelope in space called the "caustic surface" is formed by 

the virtual extension of the reflected light rays (Fig. 11). The intersection of this 

surface with a plane located at a distance ZQ behind the specimen is called the 

"caustic curve" and it bounds a dark region called the "shadow spot." 

Let (xi,X2) be a coordinate system on the specimen surface centered at the 

crack tip and (Xi,X2), a system translated by a distance ZQ behind the specimen 

surface. Then the mapping of a point (xi,X2) on the specimen surface to a point 

(Xi,X2) on the plane at zo due to reflection of a light ray may be described by 

(ROSAKIS and ZEHNDER (1985)), 

X.=x.+2zo^^^fi^. (5.1) 
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The locus of points on the specimen surface at which the Jacobian determinant of 

the mapping (5.1) vanishes is called the "initial curve." While points on the initial 

curve map onto the caustic curve, all points both inside and outside the initial curve 

map outside the caustic. The position of the initial curve may be varied by changing 

Zo- 

For a stationary crack under small-scale yielding conditions, if the initial curve 

is chosen to fall well outside the plastic zone and within the region of validity of the 

Ki field (large values of ZQ), then the resulting caustic curve will be an epicycloid 

(Fig. 12a).   In such a case, Ki is related to the caustic diameter D (which is the 

maximum width of the caustic in the X2 direction) by (ROSAKIS and ZEHNDER 

(1985)), 

ED5/2 

^^ = Toj^' ^'-'^ 

where h is the specimen thickness. The initial curve is circular and its radius TQ is 

given by 

ro = 0.316D . (5.3) 

On the other hand, if the initial curve is chosen to fall well inside the plastic 

zone and within the region of dominance of the HRR field (very small values of 

Zo), then its shape as deduced by ROSAKIS et al. (1983) will no longer be circular. 

In such a case, the radius ro of the point on the initial curve that maps to the 

maximum value of X2 on the caustic curve is given by 

To = 0.385D (5.4) 

for a hardening exponent n of 9. Also, the value of the J integral may be obtained 

from the caustic diameter D as (ROSAKIS et al. (1983)), 

J-S  ^ 
2 r    E 

cToZoh 

3u + 2 
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Figure     12.  Predicted caustic shapes based on a) Ki field and b) HRR asymptotic 
field for n=9. 
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where Sn is a numerical factor dependent on n. Caustic curves thus obtained from 

the HRR field for several values of the hardening exponent are given by ROSAKIS 

et al. (1983). A typical caustic for n=9 is shown in Fig. 126. 

Results and Discussion 

The discrete values of the out-of-plane displacement U3 obtained from the nu- 

merical solution at the centroids of the elements were smoothed using a least-squares 

finite element scheme as advocated by HINTON and CAMPBELL (1974). The sur- 

face thus generated is shown in Fig. 13 for a material with a hardening exponent of 

9. Caustic patterns were simulated by mapping light rays point by point from this 

smoothed surface using Equation (5.1) for different values of ZQ. 

The sequence of caustics simulated from the finite element solution for different 

values of zo is shown in Fig. 14 for a material with n = 9. The parameter ^ in 

the figure is the ratio of the initial curve size to the maximum plastic zone extent. 

The initial curve size ro was estimated approximately by using Equation (5.4) for 

caustics from within the plastic zone and by Equation (5.3) for caustics from outside 

the plastic zone. It is seen from the figure that for ^ = 0.19, the simulated caustic 

agrees in shape with the caustic predicted by the HRR field, which is shown in 

Fig. 126. When ^ = 1.3, the numerically simulated caustic, Fig. 14/, agrees with 

the caustic predicted using the elastic, Kj field (Fig. 12a). 

A sequence of photographs of caustics (ZEHNDER et al. (1986)) obtained from 

the tensile loading of a thin compact tension specimen of 4340 carbon steel is shown 

in Fig. 15. The experimental details, specimen dimensions, etc. are described by 

ZEHNDER et al. (1986). On comparing Figs. 14 and 15 it is seen that in both 

cases there is a transition from an "HRR caustic" to an "elastic caustic" as ^ goes 

from 0.19 to 1.4. The transition away from the HRR caustic appears to take place 

slightly sooner in the numerical model (around ^ = 0.3) than in the experiment 
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Figure     13.  Smoothed out-of-plane displacement field for n—9. 
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(around r^ — 0.35). However, the general trend is similar in both cases. 
I,, 

It is found that both the numerical and experimental caustics retain the shape 

predicted by the Ki field even for r^ as small as 1.0. Thus, the effect of the plastic 

zone cannot be judged by mere observation of the caustic shape. The reason for the 

invariance in shape of the caustics is explained by examining the angular variation 

of the sum (an + 0-22), of the direct stress components (as given by the numerical 

solution), at different distances outside the plastic zone as shov^^n in Fig. 16. It is 

seen that the sum (CTH -|- 0-22) generally follows the angular distribution given by 

the Ki field, which is shown by the solid line in the figure even for ^ as small as 

1.2. However, the individual stress components show more deviation from those of 

the KI field for small values of ^. This observation is important, since the caustic 

shape depends on the angular variation of the out-of-plane displacement component 

U3, which in the elastic region, is proportional to (an + a22) under plane stress. 

Thus, it is not surprising that the caustic shape resembles the "elastic caustic" for 

^ as small as 1.0. 
i"p 

The numerical caustics were simulated for a fixed value of Kj (or the far- 

field value of J as given by (3.3)) by varying ZQ in the optical mapping Equation 

(5.1). The relationship between the diameter D of the simulated caustics and the 

remotely applied J value is shown in non-dimensional form in Fig. 17. The inverse 

of the abscissa in the figure is an indication of the initial curve size or the distance 

from the crack tip at which the information about the deformation field is being 

scrutinized. Thus a very small abscissa value (large ZQ or small J) implies that the 

initial curve is far away from the tip. A very large abscissa value, on the other hand, 

implies that the curve is very near the tip, probably within the range of dominance 

of the HRR field. The bars on the numerical results indicate the uncertainty in 

determining the initial curve due to discretization of the finite elements. 
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The solid line in the figure represents the variation of caustic size in the Kj 

dominated region as given by (5.2) with v = 0.3. The dashed line gives the rela- 

tionship for the caustics from the HRR-dominated region (5.5). As can be observed 

from this figure, the numerical results approach the elastic relation (5.2) for small 

abscissa values and the relation (5.5) obtained from the HRR solution for large 

values of the abscissa. In the intermediate region there is a transition from one 

distribution to the other. 

6. SINGULAR FINITE ELEMENT ANALYSIS 

Introduction 

In this section, a detailed investigation of the perfectly plastic case will be 

presented, with the view of examining closely the discrepancy between the numerical 

results for the near-tip strains and the corresponding term of the HRR solution 

(non-hardening limit), which was noted in Sec.(4). For this purpose, a singular 

finite element analysis similar to the plane strain work of RICE and TRACEY 

(1973) was carried out under Mode I plane stress, small-scale yielding conditions. 

A ring of focussed isosceles triangular-shaped elements was used near the crack tip 

in this computation. This mesh design is different from the fine mesh employed in 

the earlier analysis (Fig. 16). Thus, the issue of sensitivity of the numerical results 

presented earlier in Sec.(4) to the near-tip mesh design was also examined through 

this section of our work. 

Numerical Scheme 

The near-tip elements that were employed here provide a capability for non- 

uniqueness of displacement at the crack tip (LEVY et al. (1971); RICE and 

TRACEY (1973)), which is the fundamental feature of the j plastic strain sin- 

gularity within centered fan regions (Sec.(3)).   This was achieved by treating the 
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triangular elements at the crack tip as degenerate isosceles trapezoids that have 

a total of four nodes (one at each vertex) with two nodes coinciding at the crack 

tip (Fig. 18). The coincident nodes at the crack tip were constrained to move as 

a single point till the load level at which incipient yielding was detected in one of 

the near-tip elements. A special shape function (RICE and TRACEY (1973)) was 

used up to this load level to provide the crack tip elements the capability to model 

the -pj dominant elastic strain singularity. Subsequently, the coincident nodes were 

allowed to move independently and the crack tip elements modelled the - pleistic 

strain singularity. 

The mapping of a four-noded rectangle to a triangle (Fig. 18) can be described 

by 
^^_^/. (1-0(1 + 77)   ^,{l-^){l-rj)   ^^^,(l + e)(l-r7) 

-     - 4 -4 -4 .„x 

,   I (1 + 0(1 + ^) ^   ^ 

with the constraint x' = X''- Here {^,T]) is the natural coordinate system for the 

element and (xi,X2) is a global coordinate system centered at the crack tip. The 

inverse mapping of {i,T]) in terms of a local Cartesian coordinate system (s,t), and 

a local polar coordinate system (r,t/;) for the element is given by (Fig. 18), 

e = ^-i        •] 
'°W f       I   \  ■ (6-2) __     t/s     _ tanV' 

(to/so)       tana J 

The elastic singularity element has the shape function (RICE and TRACEY (1973)), 

Here u'J represents the unique displacement of the crack tip nodes i and j. The above 

element correctly models the -y/r variation in the leading term for the displacements 

of the linear elastic solution. Also, displacement compatibility is satisfied along the 
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Figure     18.   Typical near-tip element used in the singular finite element analysis. 
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edges i-1 and j-k (77 = ±1) with the adjacant singular elements and along the edge 

1-k ((^ = 1) with the conventional four-noded isoparametric element that is joined 

there. 

As was first pointed out by LEVY et al. (1971), the mapping of any four- 

noded isoparametric element to a triangle leads to a ^ strain variation provided 

that the coincident nodes are permitted to have different displacements. The crack 

tip displacement for such an element is given by (Fig. 18), 

,   ,     ,      (u' + uJ) (u'-uJ) ,     , 

Following the notation of (3.9) and neglecting the elastic strains that are bounded, 

it can be shown from (6.4) that 

^- = ^(rSr5)l-(<-"'■"-*+w-"i'I 
^'r. =   ^ (^.  ) H - <) + ("l - "i) '^"V'] ;P   _ 

(6.5) 

CTQ \4 tan a 

where Ug and ut are the displacement components in the local (s,t) Cartesian co- 

ordinate system and xjj is the angle measured in the local (r, ip) polar coordinate 

system (Fig. 18) for the element. It should be noted that the right-hand side of 

(6.5) is a first-order finite difference approximation to e^g(i/') and ef^(^). Also, it 

should be noted that if the two coincident nodes displace as a single point, so that 

u' = U'', then this element behaves as an ordinary constant strain triangle. 

The mesh employed, in this analysis was similar to the one used by LEVY et 

al. (1971). Only the upper half-plane was considered because of symmetry. The ac- 

tive mesh consisted of 20 rings with radii of L, (l.5)^L, (2.0)^L,..., (9.5)^L, (lO.O)^L 

and 115L. These were divided by 25 rays at equal angular intervals of 7.5°, giving 

a total of 525 nodes (including 25 coincident crack tip nodes) and 480 elements in 

the active mesh. The region outside consisted of 14 rings with 24 elements in each 
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ring and always remained elastic. Static condensation was employed in this region 

as described in Sec.(2). The radius of the outermost boundary S on which the dis- 

placement boundary condition (2.1) was specified was 645L. The loading process 

was stopped when the maximum plastic zone extent was about A of the radius of 
15 

the outermost boundary S, so that the small-scale yielding condition was preserved. 

The symmetry condition (2.2) on the ^ = 0 ray and the traction-free condition on 

the 0 — TT ray were enforced. 

Every near-tip element was composed of three subelements (RICE and 

TRACEY (1973)), each extending to one-third of the height of the element. A nine- 

point numerical integration scheme was employed to integrate the element stiffness 

matrix, with integration stations at (^,7? = -|,0, |) and weighting factors of | 

of the area of the element. For the isoparametric elements outside the innermost 

ring, the two-by-two Gauss quadrature scheme was used. The solution strategy was 

the same as that described in Sec. (2) with the additional modifications mentioned 

earlier in this section. 

Results and Discussion 

It can be shown by substituting the dominant term of the elastic solution for 

the stresses into the plane stress Von Mises yield condition that incipient yielding 

will occur at an angle of arccos(|) « 70.5°. Also, the value of the load parameter. 

Ki/(aoy^7riy), calculated from the analytical solution is 0.866 for initial yielding at 

a radius of ry. Incipient yielding occurred in the present finite element computation 

in the subelement between 67.5° and 75° with a mean angle of 71.25°. The value of 

Ki/{aoy/2nT^) was 0.83, which is in good agreement with the analytical prediction. 

The radial distribution of stresses along the ray ahead of the crack tip at incip- 

ient yield is shown in Fig. 19 in the nondimensional form, CT/TQ versus r/(Ki/cro)^. 

The stresses given by the finite element solution are in excellent agreement with the 
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Figure     19. Radial distribution of stresses ahead of crack tip at incipient yielding. 
Solid line is the singular elastic solution. 
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dominant elastic solution, which is shown by the solid line in the figure. Also, the 

angular distribution of stresses within the crack tip elements compared closely with 

the analytical solution. 

The plastic zone at the end of the stationary load history is shown in nondi- 

mensional coordinates in Fig. 20. This compares very well, in overall features, with 

the plastic zone obtained in the earlier analysis (Fig. 3). The maximum plastic zone 

extent is about rp = 0.28(Ki/ao) ahead of the crack tip. In the sub-elements near- 

est to the crack tip, yielding spread only from ^ = 0 to 75°, which is in approximate 

agreement with the centered fan region of Fig. 2. 

The radial stress distribution ahead of the crack tip within the plastic zone 

also appeared similar to the variation reported earlier in Fig. 6. In the subelement 

nearest to the crack tip that occupies the angular range from ^ = 0 to 7.5°, the 

stresses an and 022 reached the constant values O.QQTQ and 1.999TO, respectively, 

which agrees very well with the analytical asymptotic limit (3.7). Once again, a 

strong radial variation in the an stress component was observed along the ^ = 0 

ray, with a value at the elastic-plastic boundary of 1.40ro. 

The angular distribution of the normalized stress component ag^/ro, within the 

subelements nearest to the tip, is shown in Fig. 21 along with the slip line solution 

(solid line) of HUTCHINSON (1968b). The finite element solution shows good 

agreement with the analytical distribution in the angular range 0 < ^ < 80°, which 

corresponds to the centered fan region in Fig. 2. This was typical of the other two 

stress components Ore and Orr as well, with Orr showing more deviation from the. 

analytical solution as ^ —»■ 80°. This result is consistent with the fact that the two 

constant stress sectors in Fig. 2 were not detected by the finite element solution. 

Also, the numerical result suggests that within the fan, the focussing of the slip 

lines may occur very close to the crack tip in the angular range 65° <Q < 80°. 
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Figure 21. Angular distribution ofoge/ro within sub-elements closest to the crack 
tip at the end of the loading process. Solid line is the analytical, asymptotic solution 
of HUTCHINSON (1968b). 
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The normalized crack tip opening displacement (5t/(J/(7o), where J is the re- 

motely applied value of the J integral, was calculated based on the crack tip node 

lying on the 6 = n ray. It increased from zero at incipient yield (Ki = Kj) to a con- 

stant value of 0.84 at Kj « 3.5Kp This value did not change during the subsequent 

part of the loading process. The variation in (5t/(J/cro) during the initial phase 

of the loading process occurred since the plastic zone was not fully developed. It 

should be noted that this quantity is in excellent agreement with the value reported 

in Table 1, which was calculated on the basis of the earlier analysis. 

The displacements of the crack tip nodes were substituted into Eqn.(6.5), with 

0 = 0 (corresponding the mean angle of the near-tip element), to determine the 

angular factors e^g(^) and e^^(^) of the dominant - strain singularity (3.9). In 

order to compare with the dimensionless angular factors €^J{0,TI) given by the HRR 

analysis (Eqn.(3.1)) for large n, the functions e^gg{0) and e^g{0) obtained from the 

present finite element calculation for the perfectly plastic case were normalized as 

follows, 

[Kiloo) 
(6.6) 

[Kr/ooY 

Here In is taken as 2.6 corresponding to n —> oo in the HRR solution. The functions 

thus obtained are shown along with the HRR distribution for n=25 (which is given 

by SHIH (1973)) in Fig. 22.   It can be seen that the two angular functions are 

completely different.   It is interesting to note that the numerical solution for the 

perfectly plastic case under small-scale yielding conditions gives vanishingly small 

values for the angular factors of the dominant - strain singularity for 0 > 45°, 

although the slip line solution of Fig. 2 shows a centered fan extending from ^ = 0 

to about 80°. ' ■ ■ 

It is found that the angular factors eL and eL, obtained from the numerical 
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Figure 22. The angular factors of the 1/r plastic strain singularity obtained from 
the numerical solution on the basis of the non-unique crack tip displacement. Solid 
line is the variation given by the HRR solution for n=25 (SHIH (1973)). 
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solution, satisfy almost exactly the following relation, 

'<oiO) = eUof^^ , (6.7) 

which is analogous to Eqn.(3.11), as applied to the accumulated near-tip plastic 

strains. Also, as was observed from the near-tip strain distribution (Fig. 9) of 

the earlier analysis, it is again found from the present computation (Fig. 22) that 

e^g(^ — 0) foJ" ^^^ perfectly plastic case is about 3.3 times the corresponding value 

given by the HRR analysis for large n. 

The near-tip value of the J integral was calculated by substituting e^g[0) and 

e^g{0) obtained above into Eqn.(3.15). The integral in (3.15) was estimated numer- 

ically, and it was found that Jtip is about 0.95 times the remotely applied J value. 

This is somewhat different from the development in plane strain where TRACEY 

(1976) reported Jtip to be about 0.8 times the applied J value. But later, SHIH 

(1981) found Jtip to be 0.96 times the applied J from his finite element calcula- 

tion under plane strain, small-scale yielding conditions for the perfectly plastic case 

based on a different type of singular element. 

If the near-tip J computed above from the present analysis is used to normalize 

the crack tip displacement 6t, it is found that 6t = 0.88(Jtip/cro). Hence, it is 

concluded that (5t/(J/ao) for the perfectly plastic case under plane stress, small- 

scale yielding conditions could vary from 0.84-0.88. 

In closing, it is observed that all the results given above by the present accurate 

numerical computation are in good agreement, in every respect, with the earlier 

analysis, which employed a nonfocussing mesh with nonsingular elements near the 

crack tip. The earlier analysis relied purely on the fineness of the mesh and a large 

plastic zone to the smallest element size ratio to provide sufficient resolution near 

the crack tip. 
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APPENDIX 

Newton-Raphson Method for Equilibrium Iteration 

It was observed in Sec.(2) that an iterative Newton-Raphson method was used 

in the solution of the incremental equilibrium Equations (2.11). This procedure is 

summarized below for the k''^ equilibrium iteration of the (t -I- At)*   time step. 

1) The externally applied load is increased and F(t -|- At) is calculated. 

2) The tangent stiffness matrix K^~^(t + At) and the vector P^'"^(t -|- At) = 

/p^ B o^~^{i + At)dA are calculated. For the first iteration of the time step 

(k=l), the above vector is computed from the converged solution at the end of 

the previous time step as P°(t -f- At) = Jj^ B'^a(t)dA. 

3) The following matrix equation is solved by Gauss elimination: 

K^-^AU'^ = F(t + At) - P'^-i = AR^ . 

4) The nodal displacements and element strains are updated as follows, 

U'^(t + At) = U''-^(t + At) + AU'^ 

e''(t +At) -BU''(t-HAt) . 

For the first iteration of the time step (k=l), 

• U^(t +At) =U(t) + AU^ . 

5) In order to prevent fictitious (numerical) elastic unloading of elements in some 

parts of the plastic zone during the subsequent iterations (k > 1) of the time 

step, a path independent scheme is used to update element stresses. The 

stresses are estimated by integrating from the values at the end of the pre- 

vious accepted equilibrium configuration to the current iteration of this time 

step by using the cumulative strains as follows (BATHE (1982)), 

r'-(;''(t+At) 

i(t) 
a''(t + At) =a(t)+ / Dde 
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An explicit method was employed to evaluate the integral in the above equation. 

6) The Euclidean norm of the out-of-balance force vector AR^ (see Step(3)) and 

the internal energy increment are checked for convergence by comparing with 

the corresponding values at the start of the iteration process as (BATHE and 

CIMENTO (1980)), 

IIAR^II <(5ir||AR'|| 

AU^ . AR^ < 6EA]1^ . AR^ , 

where dp and 6E are small, preset tolerances. 

If convergence is not achieved, control is returned to Step(2) to perform the 

next iteration. 

If convergence is achieved, control is returned to Step(l) to perform the next 

time step. 

Explicit Integration of Incremental Constitutive law 

The method of stress computation mentioned in Sec.(2)  is outlined for an 

isotropic hardening solid below. 

1) After solving the finite element equilibrium equations for the nodal displace- 

ment increments AU, the strain increment Ae is obtained as 

Ae = BAU, 

where B is the strain-displacement matrix. 

2) An elastic estimate Aa^ for the stress increment is computed as 

Ao:^ = CAe. 

3) A trial stress state a^ = a° + Aa^ is calculated from the stress state c° at 

the beginning of the iteration. Here q° is taken to be inside the yield surface 

(Fig. 23) for the sake of definiteness. 
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Figure 23.  Stress computation in the finite element scheme based on an explicit 
integration of the incremental constitutive law. 



-62- 

4) IfF(a^) - (a°) < 0, where a° is the value of a at the beginning of the iteration, 

then the elastic behaviour assumption holds and the remaining steps in this 

method are omitted. Otherwise, the yield surface has been crossed during the 

trial stress incrementation (Fig. 23). 

5) The contact stress state a^ is obtained as 

where 0 < q < 1 and F{a^) - (a°) = 0. This condition for the Von Mises yield 

function leads to a quadratic equation in q. It should be observed that the path 

from a° to q^ constitutes fully elastic material response. 

6) A stress state q^ is obtained as 

^^ = ^^ + C((l-q)Ae-^Fj 

= £^ + ((£^-a^)-^CF^. 

In this equation, F^- is taken as the normal to the yield surface at the stress 

state q^. Also, A A is evaluated corresponding to the stress state q^. 

7) The yield surface is updated as 

where Ae? = |AAa° and H(a°) = ||rj^", which can be obtained from (2.4) 

for hardening solids and is set equal to zero for perfect plasticity. 

8) Due to the finite nature of the time step, the stress state q^ obtained in Step(6) 

will not (in general) lie on the updated yield surface, q^ is then simply scaled 

as follows, 

The path from a^ to q^ constitutes elastic-plastic material response. 



In order to minimise the error due to the use of finite increments, the excess 

stress q^ - q^ is divided into m subincrements, and steps (6) to (8) are carried 

out m times with the subincrements. 
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